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J. Phys. -4: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

The generalized Langevin equation and the 
fluctuation-dissipation theorems 

R. J. HENERY 
Department of Mathematics, University of Strathclyde, Glasgow C1, Scotland 
MS. received 11th iWarch 1971 

Abstract. Two forms of Langevin equation are used to describe the equili- 
brium and nonequilibrium behaviour of a particle undergoing a Brownian 
motion. By comparing the results of these two forms it is shown that the 
fluctuation-dissipation theorems depend on two main assumptions. First, the 
after-effect functions are the same for the equilibrium and nonequilibrium 
states and second, the velocity power spectra are identical or the velocity 
autocorrelation function <V(t )V( t+T))  does not depend on the time t in 
the nonequilibrium state. 

1. Introduction 
Recently there have been several attempts at setting up models to describe 

molecular motion in liquids by means of a generalized Langevin equation. Kot only 
do these models base themselves on physically reasonable descriptions of liquids, but 
the form of the Langevin equation is such as to allow us to use the fluctuation- 
dissipation theorems developed by Kubo (1957). These theorems have been developed 
from statistical mechanical arguments but Kubo (1966) and Damle et al. (1968) have 
given proofs which start from a generalized Langevin equation. Our purpose is to 
discuss the assumptions underlying these proofs ; we do not deal with the validity 
of the fluctuation-dissipation theorems as such. 

Since there are many assumptions involved, we proceed as gradually as possible, 
introducing assumptions only when necessary. Thus, in $ 2  we start by solving the 
generalized Langevin equation (6) which represents a system which has been in 
motion for an infinite time and is in thermal equilibrium. From this we derive a 
formula relating the velocity power spectrum G ( w )  to the spectrum of the random 
force, and a formula giving the mobility p(w)  in terms of the after-effect function 
k ( t )  : equations (13) and (19) respectively. These formulae describe the behaviour 
of a molecule in a stationary state. 

In  $ 3, we solve the Langevin equation (7) for a molecule which was originally 
at rest for all instants before t = 0, and which is then given a velocity V,(O) chosen 
at random. The  force F(t )  is assumed to develop independently of Vo(0) in the 
sense : 

<VO(O)F(t))  = 0 Assumption I. 

In  solving (7) ,  we need no information as to how F(t )  develops immediately after 
t = 0 apart from this and the requirement of stationarity as t tends to infinity. -4s 
might be expected, however, there are transients in the solution to (7) so that a t  least 
one of Vo(t) and F(t )  is nonstationary. Since we need only the correlation function 
(Vo(0)Vo(t)) which describes the decay of the initial velocity Vo(0), we will solve 
( 7 )  for this quantity only. The  Fourier transform of (Vo(0)Vo(t)) gives a second 
expression for the velocity power spectrum Go(w).  
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With two expressions for the velocity spectrum, we need extra assumptions to 
4 we assume that the after-effect functions appearing in (6) proceed further. I n  

and (7) are the same, that is: 

ko(t) = k ( t )  Assumption 11. 

This leads to a form of the first fluctuation-dissipation theorem-to be referred to as 
FDI .  Then we assume that the velocity spectrum for the stationary state G(w) is the 
same as the velocity spectrum G,(w) which describes the nonstationary solution 

Go(w) = G ( w )  Assumption 111. 

By this means we may hope that (7) represents a situation which is not too far from 
equilibrium. Finally, we investigate how far the solution to (7)  may be taken to be 
stationary. 

to ( 7 ) :  

2. Stationary Langevin 

random walks or diffusion processes, especially in the low frequency region: 
The simple phenomenological Langevin equation ( 1) is successful in describing 

d V  
-(t)+kV(t) = F(t) .  
dt 

Here the total force on the particle is F(t )  - KV(t) and the Langevin equation will be 
successful when the total force can be resolved into two components, -KV(t) being 
that part of the total force which is correlated with the velocity V(t),  and F(t)  being 
the remainder. T o  solve (I), we assume that F(t)  is completely random in the sense: 

and 
(F(t)F(t+ T ) )  = 0 T > O  

(F( t )2 )  = F2. 

Since the velocity depends only on past values of the force, and since past and future 
forces are uncorrelated, conditions (2) lead to equation (3) : 

(V( t )F( t+ T))  = 0 T > 0 .  (3) 
From this we see that assumption I is satisfied at all times when, and only when, 
the random force is white. Appropriate use of (3) simplifies the derivation of the 
autocorrelation function for the velocity. Thus, setting t = t+ T in equation (l), 
multiplying throughout by V(t),  and averaging over a canonical ensemble, we obtain 

and we have replaced the differentiation with respect to t by that with respect to T. 
The velocity autocorrelation function is now given by equation (4) : 

R(T) = {V(t)V(t+T))  = (Vo(0)2)exp(-KT). (4) 
As is well known, this form of autocorrelation function is consistent only if the 
random force satisfies (3);  that is, if it has a white spectrum. However, although 
formula (4) is useful for long times and low frequencies, it cannot represent the 
short-time behaviour of physical systems because R( T )  is even and should have a 
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Taylor series expansion in even powers of time T ,  whereas that given by (4) is 

R(T) = V(0)2-alTI+... 

and this has discontinuous slope at T = 0. 
The motives behind the proposed generalizations of the Langevin equation are two : 

(i) it is required to take account of forces which are correlated from one instant to the 
next thus broadening conditions (2); (ii) the viscous drag is to have a measure of 
inbuilt delay between the attainment of velocity V and the resulting reaction. The  
physical reasoning for a particle in a liquid might be as follows: 

Motice (i). The total force on a particle is dominated by the contribution from 
near neighbours, but we can separate out that part which is correlated with the 
velocity and call the remainder the ‘random’ component. Thus, the total force, 
E(t), would be given by 

E(t) = -kV+F(t). (5) 

As in elementary statistics, - K  = (V(t)E(t))/(V(t)2} and the random part F(t) 
is uncorrelated with V(t). However, in a real liquid, the neighbouring particles change 
configuration in a time of order T (say), so that F(t) e. F( t+dt )  if dt is less than T. 
More generally, we assume that 

<F(t)F(t + ) = RF(T) 

where RF(T)  is the force autocorrelation function, assumed to be independent of 
time t, so that the force F(t) is a stationary process. 

Motive (ii). If the total force E(t) is given by (5), we can say that the original 
cause for the velocity V(t) is that the configuration of neighbours is such as to acceler- 
ate the particle in the given direction, and this configuration will last for a time of 
order T. Alternatively, if the neighbours are at rest and the particle is moving at 
velocity V ,  the neighbours will move in such a way as to reduce the total force and 
there will be a time delay (of the order of T) before this happens. Thus, over and 
above the correlation with the velocity at time t, the total force is partly correlated 
with the velocity at all previous moments. 

Thus the generalization given by ( 6 )  is deemed to be physically reasonable and 
capable of describing correlated motions, as in liquids. I n  equation (6), the viscous 
drag is delayed-this is represented by the after-effect function K(t) which gives the 
viscous drag at a time t after a unit impulse velocity has been applied at t = 0. This 
after-effect function may very well depend on the initial conditions and on 
whether conditions are stationary or not. The force F(t) is assumed to be nonwhite 
and independent of the initial conditions : 

t 

B(t)+ k(t-s)V(s)ds = F( t ) .  
- x  

We will also consider the generalization given by ( 7 )  in which the after-effect function 
Ko(t) differs from K(t) in general 

t 

Vo(t)+ 1 k,(t -s)V0(s) ds = Fo(t) .  (7) 
0 

I n  this way, by considering two forms for K(t), we may go some way towards the 
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more general form k( t ,  s). In  4 4, we will see what follows if assumption I1 is true, 
that is, if k,(t)  = k ( t ) .  Both after-effect functions are assumed real; that is, they 
vanish for negative time. 

So far the argument has followed that of Kubo (1966), but whereas he assumes 
the solution to (7)  is stationary and derives thereafter the fluctuation theorems, we 
adopt a more cautious approach. The  remainder of this section is devoted to solving 
(6) which may safely be taken to represent the stationary state. Csing the method of 
Rice, it is possible to solve (6) and obtain all relevant correlation functions in terms 
of the properties of k( t )  and F(t). We defer, until 4 3, the consideration of (7) ,  which 
we solve by a special device; since (7) is essentially nonstationary the Rice method is 
inappropriate. 

The random force F(t )  is described by the formal representation given in (8) and 

(9): J: 

F ( t )  = (a(w) cos(wt) + h(w) sin(wt)) dw (8) 

(9) 

- w  
where 

<u(w)a(w’)  ) = (b(w)b(w’) ) = S(w)G(w - w ’ )  

( a ( w ) b ( w ’ ) )  = 0 
S(w) is the power spectrum of the process F(t) ,  G(w) is the Dirac delta function. 
Thus, using these definitions, 

for all w, w ’ .  

m 

( F ( t ) 2 )  = 1 S(W) dw (independent of t )  

and this relation is the reason for calling S(w)  the power spectrum. The  velocity V(t)  
will have a similar representation given by (10) : 

- m  

V( t )  = l x  (c(w) cos(wt)+d(w) sin(wt)) dw. (10) 
- x  

Inserting (8) and (IO) in (6), we get the following expressions for c(w) and d(w) which 
constitute the required solution: 

and 

Q(w) = k ( s )  sin(ws) ds 
0 

Z(w)2 = P(w)2+ ( w -  Q(w))2. 

It is easily verified that the c(w) and d(w) satisfy relations analogous to (9): 

(C(W)C(W’) ) = (d(w)d(w’)  ) = G ( W ) ~ ( W  - U’) 
(12) 

(c (w)  d(w’ )  ) = 0 for all w ,  w‘ 
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with the velocity power spectrum G(w) given by 

We have now all the information necessary for evaluating all averages involving F(t)  
and V(t) or their time derivatives and it is a simple matter to demonstrate that these 
averages are all time-independent so that the process V(t) is also stationary. 

Before stating some correlation functions which we will require later, we will 
convert our results to complex notation. Equations (8) and (10) become (14) and (15) 
respectively, with the convention that only the real parts be taken: 

where 

and 

F( iw) exp( - iwt) dzu II, F ( t )  = 

V ( t )  = [ 
s2 

V(iw)  exp( - iwt) dw 
U - w  

F( iw)  = a(w) + ib(w) 

V(iw) = c(w) + id(w).  

By the substitution i = - i, we obtain the definitions for F( - iw) and V( - iw). The 
results expressed in (1 1) take the more concise form : 

F( iw) 
V(iw) = - 

Z( iw) 
with 

Z(iza) = -iw+k(iw) = P(w)+i{Q(w)-w). 

The power spectra for the force F( t )  and velocity V(t)  are now given by 

and 
S(W) = (F( izo)F( - iw) ) 

G ( w )  = ,< V(  iw) V( - iw) ) 

( F (  iw)P( - iw) ) S(w)  
Z(iw)Z( - iw) Z ( W ) ~  

-- - - - 

as before. I n  general, averages involving V(t) and F ( t )  may be evaluated using the 
definitions (14) and (15) and it will be found that these averages are time-independent. 
Therefore, to obtain the correlation function between two variables, say V(t) and 
F( t+  T ) ,  we set t = 0 in (15) and t = T in (14), then multiply the integrands and 
integrate over U;: 

< V ( t ) F ( t + T ) )  = ( V ( O ) F ( T ) >  
X 

= ( V( - iw)F( iw) > exp( - iw 7') dw 
* - 2  

s(w) exp( - iwT) dw. 
=, iw + k( - iw) 
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Since the real part is to be taken 

O0 S(w) 
--03 (wI2 

(V(t)F(t+T)) = j z-- {P(w) c ~ s ( w T ) - ( w - Q ( w ) ) s i n ( w T ) } d w .  (16) 

This correlation function is the quantity which is assumed zero under assumption I, 
and although this is possible for some values of T in the stationary state, it is not 
possible for all values of T. This is because the vanishing of (16) requires an even 
function of T to be equal to an odd function of T. However, by admitting such un- 
physical correlation functions as that given in (4), we get a formal solution which will 
make a true. Kubo (1966) rejects such solutions for the very good reason that they 
contradict the assumption of stationarity by which all averages are assumed to be 
time independent. Thus, for the case discussed by Kubo, namely the average of V(t)2 

d 
d t  
- {V(t)Z) = / 2 V ( t ) V ( t ) )  = 0 

which contradicts the Taylor series expansion of (V(t)V(t+ T)) given by (4). 
We now state the formulae for several correlation functions which we require 

later. In  deriving these, use may be made of the fact that the time derivatives of these 
functions vanish provided we do not use pathological functions such as (4) in trying 

m 

R2(T)  = {V(t )V(t+ T ) )  = 1- E2 w2 cos(wT) dw 

0 

R,3(T) = (V(t )V(t+ T)? .  = 1 - :-$ w4 cos(wT) dw. 

2.1. :Vlobility 
If the driving force Fo cos(wt) is added to the random force F(t)  in (6), we can 

find the average steady state response (V( t ) )  by assuming that transients have 
decayed to zero so that ( V ( t ) )  is oscillating at the frequency w.  Setting (V( t ) )  equal 
to the real part of V(iw) exp(iwt), we take the average of (6): 

rl rt 
-U- <V(t))+ I dt - x  

(V(s))K(t-s) ds = Fo cos(wt) 

or 

so that 
iwV( - iw) + V( - iw)k( - iw) = F, 

V( - iw) = 
iw + K (  - iw) 

V ( t )  == Re{,u(w)Fo exp(iwt)} 

1 

or 

where we have written 

I " ' ~ ' )  = iw + 
- iw)* 

The  mobility p(w) is only defined for the stationary state and should therefore be 
used for (6) or, in the long time limit, for (7) .  Thus, in deriving the corresponding 
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quantity for ( 7 ) ,  we must again assume that the transients have decayed to zero, so 
that we must effectively replace ( 7 )  by (6) and the mobility will then be given by (20) 
again. 

3. Solution to (7) 
The solutions to (6) and (7) should agree for times t much greater than the decay 

time T of the transients. For example, the correlation functions (17), (18) and (19) 
will give the long-time or steady-state behaviour so that only the short-time behaviour 
of (7) is of interest. 

We emphasize that ( 7 )  contains transients which imply that (7) relates to a non- 
stationary state. T o  insist that V(t) be stationary in the absolute sense would 
contradict the spirit of the generalizations (6) and (7) which were supposed to deal 
with different physical situations. I n  the extreme case that both (6) and (7)  describe the 
equilibrium state, we see that the force F,(t) differs from F(t )  by a term 
SO_, K(t-s)V(s) ds and of course (7) will give no information in addition to that which 
we have extracted from (6). By imposing suitable conditions, however, we may hope 
to make Vo(t) partly stationary in that some correlation functions are independent of 
time. Thus, if we demand that the ‘projection’ of Vo( T )  on the original velocity be 
equal to the corresponding quantity in equilibrium, we have a kind of guarantee that 
V,(t) will remain close to thermal equilibrium. Indeed, this condition leads to a 
form of the fluctuation-dissipation theorem FDl . 

Since complete knowledge of the short-time solution is not required, we project 
equation (7) on to the initial velocity Vo(0) which is assumed to have been chosen at 
random from a canonical ensemble. We define the velocity Vo(t) for instants prior 
to t = 0 to be identically zero. 

Thus, multiplying ( 7 )  by Vo(0) and averaging, and using assumption I since 
V,(O) is chosen independently of Fo(0),  we obtain 

Taking the Fourier transform Jzs exp( - iwt) dt of this last equalion, we have 

( Vo(o)2 ) Go( -iw) = - 

G,(-iw) = 1 <Vo(0)Vo(t))exp(-iwt)dt 

iw + ko( - iw) 
where 

m 

0 
and 

k o ( t )  exp( - iwt) dt. 

If we define the power spectrum Go(w) of Vo(t) to be the real part of Go( - iw), as is 
done by Kubo (1966), then Go(w) is given by (23): 

iw i ko( - iw)  GO(^) = Re{G,( - iw)} = Re 

I n  order that the power spectrum in equilibrium be the same as the ‘power spectrum’ 
defined by the decay of the initial velocity, assumptions I1 and I11 must hold. I n  
the next section we see what follows by assuming first I1 and then 111. 
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d remarkable feature of (23) is that it has been derived without knowledge of the 
force Fo(t)-assumption I and the fact that we require only the correlation function 
(V,(t)V,(O)) have allowed us to do this. It is clear that Fo(t)  need not be wide sense 
stationary in order that (23) holds, and indeed on physical grounds we would expect 
F(t)  to be nonstationary. That either Fo(t)  or Vo(t) is nonstationary may be shown 
quite simply by considering averages derived from ( 7 )  and comparing these with the 
corresponding averages derived from (6). Thus, for example, from (7) we have 

(K2(o)2) = ( F o ( o ) 2 )  
whereas from (18), representing the stationary result 

w2S(w)  dw 

- m  z ( W ) 2  ' 
<JW2) = 1 

If we assume that Vo(t)  is stationary, we get the following equation for (Fo(0 )2 ) :  

whereas the definition of S(w)  gives: 
X 

( F ( t ) 2 )  = 1 S(W) dzo 
- x  

and these two expressions will give different values for the mean square force. Simi- 
larly, we can derive two expressions for ($'( t )2>,  if this exists, one from the equilibrium 
state and from the initial value PO(O) = Po(0) - Vo(0)Ro(O) derived from (7). I t  will 
be seen that these give different answers if Vo(t) is assumed stationary. 

4. Fluctuation-dissipation theorems 

dissipation theorem FD1. Comparing equations (20) and (22 ) ,  we see that 
The immediate consequence of taking I1 to be true is a form of the first fluctuation- 

1 
1 

p(w) = -___ Go( - iw) < 1'0(0)2 > 
or 

m 1 
p(w)  = ---I (Vo(0)Vo(T))exp(-izaT)dT (24) <v0(q2) 0 

which is FDI, and which may also be referred to as the general admittance formula 
-it relates the (steady-state) transport coefficient p(w) to the (transient) correlation 
function of flow (Vo(0)Vo(T)).  In  the original discussions of the FD theorems, 
p(w) was given in terms of the fluctuations in equilibrium so that we would like to 
substitute the steady-state correlation function in (24), and, as already mentioned in 
$ 3 ,  this helps to ensure that Vo(t) remains as close as possible to thermal equilibrium. 
Thus, making assumption I11 we obtain: 

m 1 
p(w)  = ---I (V(t)V(t+T))exp(- iwT)dT (25 1 <V2(t> ) 0 

which is the usual form of FD1. As a further benefit of assuming 111, the second 
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fluctuation-dissipation theorem FD2 follows. Writing (23) as 

Re(K( - in))  
Go(w) = 7 i G ( ~ )  = (V(0)' ) Z( w ) 2  

and comparing this last equation with (13), we see that 

nS(w) = ( V(0)2 )Re(k( - iw)) 

(Jw2) 0 

(26) 

(27) 

or 
m 1 

K (  - iw) = 1 (F( t )F( t  + T )  ) exp( - iwT) d T  

and this is FD2, which we can state as effectively equating the after-effect function 
k ( t )  with the correlation function of the random force. Thus both FD1 and FD2 
depend on all three assumptions. If we were to avoid the assumptions and derived 
FD1 and I'D2 from (6) alone, we would need the following generalization of I :  

t 

{ V(t)F(t + T) ) = ( V ( t ) V ( s ) ) K ( t t T - s )  ds, 
- m  

With this condition, the velocity autocorrelation function satisfies (21) in equilibrium 
and FD1 and FD2 then relate to the equilibrium state alone. 

5. Example 
There is one case in which we can write down explicit solutions to (6) and (7). 

This case occurs when a stationary random force F(t) ,  of known spectral density, is 
applied to a system with an exponential decay function K(t) = K exp( - at). The 
solution to (6) is given by (10); and we can obtain the solution to (7) by considering the 
equation of motion for the difference r;(t) : 

v(t) = Vo(t)-  V(t)  
namely 

7j(t) + 1; k-i(s)  exp{ - cc(t -s)) ds = exp( - at){F(O) - v(0)) (28) 

the result for V,(t) is 

where 
Vo(t)  = V(t) + A  exp( - a,t) + B exp( - M$) (29 1 

2a, = x++a2-4k)12 

2 x 2  = a-(CC2-4k)1/2 

and A, B are constants depending linearly on the initial values of V(t),  v('ct), Vo(t) 
and F(t). Note that Vo(t) -+ V(t)  as t -+ cc so tkat the terms containing A and B 
are transients. 

For example, multiply 

(VO(0) Vo(t) ) 

(29) by Vo(0) and avercge giving 

= (AVo(0) ) exp( - x , l )  + (BVo(0) ) exp( - a,t) 
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Obviously (30) describes the average transient behaviour, but if we make the equili- 
brium autocorrelation function (V(t)V(t+ T ) )  equal to the expression on the right 
of (SO), then we can expect that V,(t) will not be far removed from stationarity. Thus, 
in the Taylor series: 

d 
dt 

(V,(t)2) = (V0(O)2>+t- (vo(o)2)+ . * a  

all coefficients o f t ,  t2 ,  etc. should vanish. 
The  first two coefficients, those of t and t2  are respectively 

and 

and it will be seen that these vanish under assumptions I and 111. However, the 
coefficient of t3 is not zero in general, and Vo(t) is therefore not stationary. The  
departure from stationarity is relatively small since for small times the t3 term will be 
small and for times of order txXz-l the transient terms are decaying fast. 
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